午夜三级a三级三点在线观看-韩国精品一区二区三区无码视频-免费无码肉片在线观看-男人扒开女人腿做爽爽视频

返回首頁

拉格朗日插值法例題(拉格朗日插值法例題視頻)

來源:www.wzyzyouth.com???時間:2023-01-07 14:31???點擊:75??編輯:admin 手機版

1. 拉格朗日插值法例題視頻

在數值分析中,拉格朗日插值法是以法國十八世紀數學家約瑟夫·拉格朗日命名的一種多項式插值方法。

許多實際問題中都用函數來表示某種內在聯系或規律,而不少函數都只能通過實驗和觀測來了解。如對實踐中的某個物理量進行觀測,在若干個不同的地方得到相應的觀測值,拉格朗日插值法可以找到一個多項式,其恰好在各個觀測的點取到觀測到的值。

2. 拉格朗日插值例子

構造一組插值基函數.”就是構造一個函數,這個函數在其中一點的值為1,其它點的值為0。這樣的話把n個這樣的函數加權加起來得到的函數就是在每個點上的值都是需要的了

3. 拉格朗日插值法原理

構造函數4a+b+m(a^2+b^2+c^2-3)

對函數求偏導并令其等于0

4+2ma=0

1+2mb=0

2mc=0

同時a^2+b^2+c^2=3

所以

m=根號17/2根號3

a=-4根號3/根號17

b=-根號3/根號17

4a+b=-根號51

1、是求極值的,不是求最值的

2、如果要求最值,要把極值點的函數值和不可導點的函數值還有端點函數值進行比較

3、書上說是可能的極值點,這個沒錯,比如f(x)=x^3,在x=0點導數確實為0,但是不是極值點,所以是可能的極值點,到底是不是要帶入原函數再看

4. 拉格朗日插值法程序設計流程圖

拉格朗日乘數法(以數學家約瑟夫·路易斯·拉格朗日命名)是一種尋找變量受一個或多個條件所限制的 多元函數的 極值的方法。

這種方法將一個有n 個變量與k 個 約束條件的最優化問題轉換為一個有n + k個變量的方程組的極值問題,其變量不受任何約束。

這種方法引入了一種新的標量未知數,即拉格朗日乘數:約束方程的梯度(gradient)的線性組合里每個向量的系數。

此方法的證明牽涉到偏微分, 全微分或鏈法,從而找到能讓設出的隱函數的微分為零的未知數的值。

5. 利用拉格朗日插值法

線性插值也叫兩點插值,已知函數y = f (x)在給定互異點x0, x1上的值為y0= f (x0),y1=f (x1)線性插值就是構造一個一次多項式:P1(x) = ax + b,使它滿足條件:P1 (x0) = y0, P1 (x1) = y1 其幾何解釋就是一條直線,通過已知點A (x0, y0),B(x1, y1)

6. 拉格朗日插值法實際應用

拉格朗日乘數原理(即拉格朗日乘數法)由用來解決有約束極值的一種方法。

有約束極值:舉例說明,函數 z=x^2+y^2 的極小值在x=y=0處取得,且其值為零。如果加上約束條件 x+y-1=0,那么在要求z的極小值的問題就叫做有約束極值問題。

上述問題可以通過消元來解決,例如消去x,則變成

z=(y-1)^2+y^2

則容易求解。

但如果約束條件是(x+1)^2+(y-1)^2-5=0,此時消元將會很繁,則須用拉格朗日乘數法,過程如下:

f=x^2+y^2+k*((y-1)^2+y^2)

f對x的偏導=0

f對y的偏導=0

f對k的偏導=0

解上述三個方程,即可得到可讓z取到極小值的x,y值。

拉格朗日乘數原理在工程中有廣泛的應用,以上只簡單地舉一例,更復雜的情況(多元函數,多限制條件)可參閱高等數學教材。

7. 拉格朗日插值算法流程圖

[拉格朗日(Lagrange)中值定理]若函數f(x)滿足條件:

(1)在閉區間[a,b]上連續;

(2)在開區間(a,b)內可導,則在(a,b)內至少存在一點ξ,使得

顯然,羅爾定理是拉格朗日中值定理當f(a)=f(b)時的特殊情形,拉格朗日中值定理是羅爾定理的推廣。

8. 拉格朗日插值法算法

一、拉格朗日插值法

是以法國十八世紀數學家約瑟夫·路易斯·拉格朗日命名的一種多項式插值方法。許多實際問題中都用函數來表示某種內在聯系或規律,而不少函數都只能通過實驗和觀測來了解。如對實踐中的某個物理量進行觀測,在若干個不同的地方得到相應的觀測值,拉格朗日插值法可以找到一個多項式,其恰好在各個觀測的點取到觀測到的值。這樣的多項式稱為拉格朗日(插值)多項式。

二、Lagrange基本公式:

拉格朗日插值公式,設,y=f(x),且xi< x < xi+1,i=0,1,…,n-1,有:

Lagrange插值公式計算時,其x取值可以不等間隔。由于y=f(x)所描述的曲線通過所有取值點,因此,對有噪聲的數據,此方法不可取。

一般來說,對于次數較高的插值多項式,在插值區間的中間,插值多項式能較好地逼近函數y=f(x),但在遠離中間部分時,插值多項式與y=f(x)的差異就比較大,越靠近端點,其逼近效果就越差。

三、C++實現

#include <iostream>

#include <conio.h>

#include <malloc.h>

double lagrange(double *x,double *y,double xx,int n)/*拉格朗日插值算法*/

{

int i,j;

double *a,yy=0.0;/*a作為臨時變量,記錄拉格朗日插值多項式*/

a=(double *)malloc(n*sizeof(double));

for(i=0;i<=n-1;i++)

{

a[i]=y[i];

for(j=0;j<=n-1;j++)

if(j!=i) a[i]*=(xx-x[j])/(x[i]-x[j]);

yy+=a[i];

}

free(a);

return yy;

}

/

int main()

{

int i;

int n;

double x[20],y[20],xx,yy;

printf("Input n:");

scanf("%d",&n);

if(n>=20)

{

printf("Error!The value of n must in (0,20).");

getch();

return 1;

}

if(n<=0)

{

printf("Error! The value of n must in (0,20).");

getch();

return 1;

}

for(i=0;i<=n-1;i++)

{

printf("x[%d]:",i);

scanf("%lf",&x[i]);

}

printf("\n");

for(i=0;i<=n-1;i++)

{

printf("y[%d]:",i);

scanf("%lf",&y[i]);

}

printf("\n");

printf("Input?xx:");

scanf("%lf",&xx);

yy=lagrange(x,y,xx,n);

printf("x=%.13f,y=%.13f\n",xx,yy);

getch();

}

頂一下
(0)
0%
踩一下
(0)
0%
最新圖文
主站蜘蛛池模板: aa级亚洲电影| 无码精品人妻一区二区三区影院 | 久久久久久久综合色一本| 亚洲乱码国产乱码精华| 日本免费人成视频播放| 久久国产精品99精品国产| 欧美丰满熟妇bbb久久久| 粗大的内捧猛烈进出在线视频 | 亚洲伊人情人综合网站| 亚洲欧美日韩国产精品一区| 99精品久久精品一区二区| 久99久无码精品视频免费播放| 国产精品成人无码视频| 丰满妇女毛茸茸刮毛| 精品无码久久久久久久久水蜜桃 | 又湿又紧又大又爽a视频| 日韩人妻无码一区二区三区综合部| 好紧好湿好黄的视频| 老子午夜理论影院理论| 日本爽爽爽爽爽爽在线观看免| 免费无码高h视频在线观看| 少妇真人直播app| 鲁一鲁一鲁一鲁一澡| 西西人体自慰扒开下部93| 国产精品久久久久一区二区三区| 亚洲成aⅴ人片久青草影院| 精品国产一区二区三区av片| 在线精品视频一区二区| 日韩精品久久无码人妻中文字幕 | 亚洲欧美日本韩国| 国产精品久久久久久无码五月| 99国产欧美另类久久久精品| 中国亚洲女人69内射少妇| 国产在线国偷精品免费看| 精品福利一区二区三区免费视频| 无码人妻aⅴ一区二区三区蜜桃| 亚洲产国偷v产偷v自拍色戒 | 欧美video变态另类| 亚洲a∨无码一区二区三区| 丰满少妇人妻无码专区| 奇米影视7777狠狠狠狠影视|